

INDIRA GANDHI INSTITUTE OF DEVELOPMENT RESEARCH

General A.K. Vaidya Marg, Santosh Nagar, Goregaon (East), Mumbai - 400 065

M.Phil-Ph.D ENTRANCE EXAM SAMPLE QUESTIONS

BASIC MATHEMATICS

This document consists of two sets of Sample Questions (SET I and SET II) of the M.Phil-Ph.D Entrance Exam, which is in addition to the sample questions given in the Information Handout . Please note that the sample questions are provided for Basic Mathematics (Test II). The questions are illustrative and not exhaustive. In the actual examination you may find questions of a higher difficulty level on some or all of these types and also questions on the types not mentioned here.

SET I

Test II: TEST OF BASIC MATHEMATICS

This test is designed to examine the candidate's mathematical abilities.

Q.1. The limit of the sequence
$$f(n) = 50 + (-1)^n \left(\frac{n^2}{2n}\right)$$
; $n = 1, 2, 3, ...,$ equals:

- (1) 0
- (2) 50
- (3) Positive infinity
- (4) Negative infinity
- (5) None of the above

Q.2. Let $f(x) = x \log(1 + x^{-1})$, $0 < x < \infty$. Then, $\lim_{n \to \infty} f(x)$ is:

- (1) 1
- (2) 0
- (3) e (i.e., exponent)
- (4) Undefined
- (5) None of the above.
- **Q.3.** The function $f(x) = -e^{-x}$ is
 - (1) Convex
 - (2) Concave
 - (3) Linear
 - (4) Quasi-linear
 - (5) None of the above.

Q.4. Given $f(x) = \sqrt{x}$, then $f^{-1}(f(x))$ is:

- (1) *x*
- (2) x^2
- (3) \sqrt{x}
- (4) $\sqrt{x^2}$
- (5) None of the above.
- **Q.5.** Seven basketball teams play in a league against each other. At the end of the season, how many different permutations are there for the top three teams in the rankings?
 - (1) 6
 - (2) 42
 - (3) 210
 - (4) 5040
 - (5) 50450
- **Q.6.** Six horses are running a race. How many different groups of horses could make up the first three finishers?
 - (1) 6
 - (2) 18
 - (3) 20
 - (4) 120
 - (5) 720
- **Q.7.** What are the values of x that satisfy the equation $x^2+4x+3=0$
 - (1) -3
 - (2) -1
 - (3) -3 and -1
 - (4) 3 and 4
 - (5) 4
- **Q.8.** A company's profits have doubled for each of the 4 years it has been in existence. If the total profits for the last four years were Rs. 30 million, what were the profits in the first year of operation?
 - (1) Rs.1 million
 - (2) Rs. 2 million
 - (3) Rs. 4 million
 - (4) Rs.4.5 million
 - (5) Rs. 6 million.

Q.9. Let A and B be two 3X3 matrices with Det A = 4 and Det B = 3. If Det (2AB) = X and

Det $(3AB^{-1}) = Y$. Then the values of X and Y are

- (1) 24,36
- (2) 24,4
- (3) 96,36
- (4) 96,4
- (5) None of the above

Q.10. Find the area of the triangle ABC whose vertices are A(1,-1,2), B(2,1, -1) and C (3,-1,2)

- (1) 2√13
- (2) $\sqrt{13}$
- (3) $\sqrt{15}$
- (4) √26
- (5) 13
- **Q.11.** The number of solutions of |x+1| = |x-1| is
 - (1) 0
 - (2) 1
 - (3) 2
 - (4) 3
 - (5) None of the above

Q.12. Find the sum of the infinite series whose nth term is $\frac{n}{(n-1)!}$

- (1) 2e-1
- (2) 2e+1
- (3) e-1
- (4) e+1
- (5) 2e
- **Q.13.** The ratio of sum of first 3 terms of a Geometric Progression to the sum of first 6 terms is 64:91. The common ratio of GP is
 - (1) $\frac{3}{4}$ (2) $\frac{1}{2}$ (3) $\frac{1}{4}$ (4) $\frac{2}{3}$ (5) None of the above

- **Q.14.** *Y* varies with respect to the sum of 2 components; of which one varies directly with *X* and the other inversely with *X*. If *Y* = 6, *X* = 4 and if *Y* = $\frac{10}{3}$, *X* = 3; the relation between X and Y is,
 - (1) $Y = 2X \frac{8}{X}$
 - $(2) Y = X + \frac{4}{x}$
 - (3) $Y = -2X + \frac{4}{X}$
 - (4) $Y = 2X + \frac{4}{x}$
 - (5) None of the above

Q.15. If the lines x+y+1=0, 4x+3y+4=0 and x+ α y+ β =0, where α^2 + β^2 =2, are concurrent, then

- (1) α =1 and β =1
- (2) α =1 and β = ±1
- (3) α =-1 and β =1
- (4) $\alpha = \pm 1$ and $\beta = 1$
- (5) None of the above

Q.16. The sum of the series $1 + \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{1}{4^2} + \frac{1}{7} \cdot \frac{1}{4^3} + \dots = ?$

- (1) In 3
- (2) In 4
- (3) In 2
- (4) In 5
- (5) None of the above

Q.17. If the line y = mx+5 be a tangent to the ellipse $7x^2 + 9y^2 = 63$, then m = ?

- (1) ±1
- (2) ± 2
- (3) -1
- (4) $\pm \sqrt{2}$
- (5) None of the above

Q.18. The common region represented by the inequalities $3x+5y \le 15$, $5x+2y \le 10$, $x \ge 0$ and $y \ge 0$ is

- (1) a triangle
- (2) a quadrilateral
- (3) a rectangle
- (4) a pentagon
- (5) None of the above

Q.19.
$$\int_{x\to a} \frac{x \sin a - a \sin x}{x-a}$$
 is equal to
(1) $\sin a$
(2) $-a \cos a$
(3) $\sin a - a \cos a$
(4) $a \sin a$
(5) None of the above
Q.20. $X = 6-8i$, where i is imaginary. Then |X| is
(1) 1
(2) 10
(3) 9
(4) 16
(5) 5
Q.21. $x^2 + px + q = 0$ has 2 roots r_1 and r_2 . Then $r_1^2 + r_2^2$ is equal to
(1) $p^2 + 2q$
(2) $p^2 - 2q$
(3) p^2
(4) $p^2 - q$
(5) q^2
Q.22. Radius of the circle $x^2 + y^2 - 6x + 4y - 3 = 0$ is
(1) 4
(2) 3
(3) 2
(4) 6
(5) 10
Q.23. $x = (1 + y)^{-4}$ and $y = -2\log t$. The derivative of x with respect to t is
(1) $\frac{8}{t}$
(2) $\frac{8}{t(1+y)^3}$
(3) $\frac{8}{t(1+y)^3}$
(4) $\frac{4}{t(1+y)^3}$

(5) $\frac{8logt}{(1+y)^3}$

IGIDR Sample Questions for M.Phil./Ph.D. Programme

Q.24. The limit of $\frac{c^{1-\theta}-1}{1-\theta}$ as $\theta \to 1$ is equal to (1) (1) 0 (2) (2) π (3) (3) ∞ (4) (4) 1 (5) (5) $\log(c)$ **Q.25.** Find $\log_{10}(\frac{4}{17}) + \log_{10}(68)$ (1) $\log_{10}(8)$ (2) $\log_{10}(16)$ (3) $\log_{10}(68\frac{4}{17})$ (4) $\log_{10}(\frac{72}{17})$

(5) None of the above

Q.26. The derivative of the inverse of the function $y = f(x) = (x^5 + 3)$ is given by

(1)
$$\frac{1}{5}(y-3)^{-\frac{1}{5}}$$

(2) $\frac{4}{5}(y-3)^{-\frac{4}{5}}$
(3) $\frac{4}{5}(y-3)^{-\frac{1}{5}}$
(4) $\frac{1}{5}(y)^{-\frac{4}{5}}$

(5) None of the above

Q.27. If P(AUB) = 0.6 and $P(A \cap B) = 0.2$, then $P(A^c) + P(B^c) =$

- (1) 0.8
 (2) 0.4
 (2) 0.4
- (3) 0.6
- (4) 1
- (5) 1.2

Q.28. The equation of the tangent to the circle $x^2 + y^2 - 6x - 2y + 2 = 0$ at the point (1,-1) is:

- (1) x + y = 2
- (2) 3x y = 0
- (3) x y = 0
- (4) x + y = 0
- (5) None of the above

Q.29. Solve $\frac{dy}{dt} = 2$, given initial value y(0) = 5(1) 2+5t

- (2) 5+2t
- (3) 2t
- (4) 2*y*+5t
- (5) 5*y*+2t
- **Q.30.** A card is selected at random from a deck of 52 cards. What is the probability that the card selected is a Queen or a Spade?
 - (1) $\frac{1}{13}$ (2) $\frac{1}{4}$ (3) $\frac{4}{13}$ (4) $\frac{1}{26}$ (5) $\frac{1}{2}$
- **Q.31.** Out of 50 consecutive natural numbers, two are chosen at random. What is the probability that the sum of the numbers is odd ?

(1) $\frac{1}{2}$ (2) $\frac{1}{4}$ (3) $\frac{12}{25}$

- (4) $\frac{25}{49}$
- (5) None of the above

- **Q.32.** If sum of the roots of $ax^2 + bx + c = 0$ is equal to the sum of their squares then,
 - (1) $2ab = ac + c^2$
 - (2) $2ab = bc + c^2$
 - (3) $2bc = ac + c^2$
 - $(4) \quad 2bc = ab + b^2$
 - $(5) \quad 2ac = ab + b^2$
- Two variables x and y are connected by the relation ax + by + c = 0. If the signs of a and b are Q.33. different then the correlation coefficient between x and y is
 - (1) -1
 - (2) 1
 - (3) 0
 - (4) $-\frac{a}{b}$
 - (5) None of the above
- **Q.34.** The distance between foci of the hyperbola $x^2 y^2 = 16$ is
 - (1) 8
 - (2) $8\sqrt{2}$
 - (3) $2\sqrt{8}$
 - (4) 4
 - (5) None of the above

Q.35. If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ is equal to

- (1) $\frac{\log x}{(1+\log x)^2}$ (2) $\frac{x-y}{(1+\log x)}$
- $(3) \quad \frac{x-y}{(1+\log x)^2}$

(4)
$$\frac{1}{(1+logx)}$$

(5) None of the above

Q.36. If the function $f(x) = \frac{ax+b}{(x-1)(x-4)}$ has a local maxima at (2, -1), then (1) b = 1, a = 0(2) a = 1, b = 0(3) b = -1, a = 0(4) a = -1, b = 0(5) None of the above **Q.37.** $x = \frac{1-\sqrt{y}}{1+\sqrt{y}}$ implies $\frac{dy}{dx}$ is equal to (1) $\frac{4}{(x+1)^2}$ (2) $\frac{4(x-1)}{(1+x)^3}$ (3) $\frac{x-1}{(1+x)^3}$ (4) $\frac{4}{(x+1)^3}$ (5) None of the above **Q.38.** If F(x) = f(g(x)), where f(-2) = 8, f'(-2) = 4, f'(5) = 3, g(5) = -2, g'(5) = 6, find F'(5).(1) 24 (2) 8 (3) 12 (4) 20 (5) None of the above

Q.39. If $\int_{-1}^{4} f(x)dx = 4$ and $\int_{2}^{4} [3 - f(x)]dx = 7$, then the value of $\int_{-1}^{2} f(x)dx$ is (1) -2 (2) 3 (3) 5 (4) 8 (5) None of the above

(4) 0

Q.40.
$$\int_{-2}^{2} |1 - x^2| dx$$
 is equal to
(1) 4 (2) 2 (3) -2

(5) None of the above

Q.41. Function $f(x) = 2 + 4x^2 + 6x^4 + 8x^6$ has

- (1) Many maxima and many minima
- (2) No maxima and no minima
- (3) Only one minima
- (4) Only one maxima
- (5) None of the above

Q.42. If $f'(x) = \sqrt{x}$ and f(1) = 2, then f(x) is equal to

- (1) $\frac{3}{2} x^{\frac{3}{2}}$ (2) $\frac{3}{2} x^{\frac{3}{2}} + \frac{4}{3}$ (3) $\frac{2}{3} x^{\frac{3}{2}}$ (4) $\frac{2}{3} x^{\frac{3}{2}} + \frac{4}{3}$
- (5) None of the above

Q.43. Find the coordinates of the vertex of the parabola $y = x^2 - 4x + 1$

- (1) (2, -3)
- (2) (0,0)
- (3) (2,-2)
- (4) (-2, 3)
- (5) (2, -1)
- **Q.44.** Suppose that there is a 6-sided die that is weighted in such a way that each time the die is rolled, the probabilities of rolling any of the numbers 1 to 5 are all equal but the probability of rolling a 6 is twice the probability of rolling a 1. When you roll the dies once, the 6 outcomes are not equally likely. What is the probability of the most likely event?
 - (1) 1/7
 - (2) 2/7
 - (3) 1/3
 - (4) 1/6
 - (5) 1/2

Q.45. Find the mean of the following probability distribution

Х	8	12	16	20	24	
P(X)	1/8	1/6	3/8	1/4	1/12	
(1) 20						
(2) 12						
(3) 16						
(4) 18						
(5) 24						

Q.46. Let
$$y = \sqrt{(3 + 4x - x^2)}$$
. What is $\frac{dy}{dx}$?
(1) $-2x + 4$
(2) $\frac{1}{2\sqrt{(3+4x-x^2)}}$
(3) $\frac{2-x}{-2x+4}$
(4) $\frac{2-x}{y}$
(5) None of the above
Q.47. Find $\frac{dy}{dx}$ for $y = \frac{5x+1}{x^2+2}$.
(1) $\frac{-5x^2+2x+10}{(x^2+2)^2}$
(2) $\frac{-5x^2-2x+1}{(x^2+2)^2}$

(3)
$$\frac{-5x^2 - 2x + 10}{x^2 + 2}$$

(4)
$$\frac{-5x^2 - 2x + 10}{(x^2 + 2)^2}$$

(5) None of the above

Q.48. Find
$$\frac{dy}{dx}$$
 for $y = e^{2x} \sin^2 3x$.
(1) $2e^{2x} \sin 3x (\sin 3x + \cos 3x)$
(2) $2e^{2x} \cos 3x (\sin 3x + \cos 3x)$
(3) $2e^{2x} \sin 3x (\sin 3x + 3\cos 3x)$
(4) $2e^{2x} \sin 3x (\sin 3x - 3\cos 3x)$
(5) None of the above

- **Q.49.** The equation $x^4 + y^4 + 9x 6y = 14$ defines a curve passing through the point A(1,2). What is the equation of the tangent to the curve at A.
 - (1) $y = -\frac{1}{2}x + \frac{5}{2}$ (2) $y = \frac{1}{2}x - \frac{3}{2}$ (3) $y = \frac{1}{2}x - \frac{5}{2}$ (4) $y = -\frac{1}{2}x + \frac{4}{2}$ (5) None of the above

- **Q.50.** What is the solution set for the equation $x 12 = \sqrt{x + 44}$.
 - (1) {5}
 - (2) {20}
 - (3) {-5,20}
 - (4) {5,20}
 - (5) None of the above

M.Phil-Ph.D SAMPLE QUESTIONS

<u>SET I</u>

ANSWER KEY

TEST OF BASIC MATHEMATICS

Q.No.	Choice	Q.No.	Choice
Q.1	5	Q.26	5
Q.2	2	Q.27	5
Q.3	2	Q.28	4
Q.4	1	Q.29	2
Q.5	4	Q.30	3
Q.6	3	Q.31	4
Q.7	3	Q.32	5
Q.8	2	Q.33	2
Q.9	3	Q.34	2
Q.10	2	Q.35	1
Q.11	1	Q.36	2
Q.12	5	Q.37	2
Q.13	1	Q.38	1
Q.14	1	Q.39	3
Q.15	4	Q.40	1
Q.16	1	Q.41	3
Q.17	4	Q.42	4
Q.18	2	Q.43	1
Q.19	3	Q.44	2
Q.20	2	Q.45	3
Q.21	2	Q.46	4
Q.22	1	Q.47	4
Q.23	3	Q.48	3
Q.24	5	Q.49	1
Q.25	2	Q.50	4

SET II

Test II: TEST OF BASIC MATHEMATICS

This test is designed to examine the candidate's mathematical abilities.

Q.1. For what value of λ , the following system of equations inconsistent?

$$2x_{1} - x_{2} + x_{3} = 6$$

- 3x_{1} + x_{2} + x_{3} = 4
x_{1} + 2x_{2} + \lambda x_{3} = -2
(1) 6
(2) -6
(3) -12
(4) 12

- (5) 0
- (5) 0

Q.2. If A is a square matrix of order n, then Det(kA) = ?

- (1) k. Det(A)
- (2) n.k.Det(A)
- (3) n^k Det(A)
- (4) k² Det(A)
- (5) kⁿ Det(A)

Q.3. Solve the equation |4x + 23| = |4x - 9|?

- (1) x = 0
- (2) x = 8
- (3) $x = \frac{7}{4}$
- (4) $x = -\frac{7}{4}$
- (5) indeterminate
- **Q.4.** Polynomial equation f(x) of degree 2 when f(0)=3, f(1)=8, F(2)=21 is
 - (1) $4x^2 + x + 3$
 - (2) x^2+4x+3
 - (3) $3x^2+2x+3$
 - (4) $2x^2+3x+3$
 - (5) $21x^2+8x+3$

Q.5. The common region represented by the following inequalities is _____?

 $3x + 5y \le 15$

 $5x + 2y \le 10$

 $x \ge 0 \qquad y \ge 0$

- (1) a triangle
- (2) a quadrilateral
- (3) a pentagon
- (4) a rectangle
- (5) a square
- **Q.6.** The matrix $A = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$ is
 - (1) positive definite
 - (2) negative definite
 - (3) positive semi definite
 - (4) negative semi definite
 - (5) indefinite

Q.7. A = $\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$ Then the determinant of (adj A) is (1) k^6

- (2) 3k
- (3) k^3
- (4) $27k^3$
- (5) $3k^3$

Q.8. The particular solution of the differential equation $\frac{dy}{dt} - y - t^2 = 0$ is

- (1) $-t^2$
- (2) $t^2 2t$
- (3) $t^2 + 2t + 2$
- (4) $t^2 + 2t$
- (5) Other than the given options

Q.9. The general solution of $\frac{dx}{dt} + 2x = c$ is

(1) 2

- (2) e^{-t}
- (3) 2*t*
- (4) 2^t
- (5) Ae^{-2t}

Q.10. Let $f(x) = e^x$, $g(x) = \sin^{-1}x$ and h(x) = f(g(x)), then h'(x)/h(x) is equal to

- (1) $e^{\sin^{-1}x}$ (2) $\frac{1}{\sqrt{1-x^2}}$ (3) $\sin^{-1}x$ (4) $\frac{1}{(1-x^2)}$
- (5) None of the above

Q.11. The maximum value of $f(x) = \frac{x}{4+x+x^2}$ on [-1,1] is:

(1) $\frac{-1}{4}$ (2) $\frac{-1}{3}$ (3) $\frac{1}{6}$ (4) $\frac{1}{7}$ (5) None of the above

Q.12. If $x \log x + y \log y = 1$, then $\frac{dy}{dx}$ is equal to

- (1) $-\frac{\log x}{\log y}$ (2) $-\frac{\log ex}{\log ey}$ (3) $\frac{\log x}{\log y}$
- (4) $\frac{\log y}{\log x}$
- (5) None of the above

Q.13. If $f(x) = ax^4 + bx^2$ and ab > 0, then

- (1) The curve has no horizontal tangents
- (2) The curve is concave up for all *x*
- (3) The curve is concave down for all x
- (4) The curve has no inflection point
- (5) None of the preceding is necessarily true

Q.14. The value of $\frac{d}{dx}(|x-1|+|x-5|)$ at x = 3 is (1) -2 (2) 0 (3) 2 (4) 4 (5) 5

Q.15. $\int 2^x 3^{x+1} 4^{x+2} dx =$

(1)
$$\frac{(48)^{x}}{\log 48}$$

(2) $\int \frac{2^{x}3^{x+1}4^{x+2}}{\log 2 + \log 4 + \log 3}$
(3) $\frac{(24)^{x+2}}{\log 24}$
(4) $\int \frac{2^{x+1}3^{x+2}4^{x+3}}{\log 2 + \log 4 + \log 3}$
(5) None of the above

Q.16. If $\int (3x^2 + bx + 5)dx = 93$, then value of *b* equals

- (1) 1
- (2) 3
- (3) 2
- (4) 5
- (5) None of the above

Q.17. If $\int \frac{1}{f(x)} dx = \log\{f(x)\}^2 + c$, then f(x) =(1) x + a (2) 2x + a (3) x/2 + a (4) x² + a (5) x/4 + a Q.18. $\int_0^1 x(1-x)^n dx =$ (1) $\frac{n(n+1)}{2}$ (2) $\frac{1}{(n+1)(n+2)}$ (3) $\frac{(n+1)(n+2)}{3}$

(4)
$$n^2(n+1)$$

(5) None of the above

- **Q.19.** There are 35 students in art class and 57 students in dance class. Find the number of students who are either in art class or in dance class.
 - (a) When two classes meet at different hours and 12 students are enrolled in both activities.
 - (b) When two classes meet at the same hour.
 - (1) 47;69
 - (2) 12; 47
 - (3) 69; 23
 - (4) 80; 92
 - (5) 45; 22
- Q.20. Each student in a class of 40 plays at least one indoor game: chess, carrom and scrabble. 18 play chess, 20 play scrabble and 27 play carrom. 7 play chess and scrabble, 12 play scrabble and carrom and 4 play chess, carrom and scrabble. Find the number of students who play <u>chess and carrom</u>.
 - (1) 10
 - (2) 69
 - (3) 19
 - (4) 50
 - (5) 40
- **Q.21.** You drop a ball from *a* meters above a flat surface. Each time the ball hits the surface after falling a distance *h*, it rebounds to a distance *rh*, where *r* is positive but less than 1. Find the total distance the ball travels up and down, given that a = 6 m and r = 2/3.
 - (1) 30 m
 - (2) 20 m
 - (3) 10 m
 - (4) 40 m
 - (5) 50 m
- **Q.22.** The partial sums of the first n and n + 1 numbers of the Fibonacci sequence are both divisible by 11. What is the smallest value of n for which this is true?
 - (1) 11
 - (2) 9
 - (3) 8
 - (4) 12
 - (5) 10

- **Q.23.** An arithmetic sequence has its 5th term equal to 22 and its 15th term equal to 62. Find its 100-th term.
 - (1) 210
 - (2) 402
 - (3) 305
 - (4) 510
 - (5) 406
- Q.24. Find the sum of the first 50 even positive integers.
 - (1) 2550
 - (2) 4210
 - (3) 3270
 - (4) 5320
 - (5) 3080
- **Q.25.** In a class 40% of the students enrolled for Math and 70% enrolled for Economics. If 15% of the students enrolled for both Math and Economics, what % of the students of the class did not enroll for either of the two subjects?
 - (1) 5%
 - (2) 15%
 - (3) 0%
 - (4) 25%
 - (5) 10%

Q.26. Find the value of n for which the following equation is true: $\sum_{i=1}^{n} (0.25i + 2) = 21$.

- (1) 7
- (2) 24
- (3) 10
- (4) 32
- (5) 12
- **Q.27.** The sum to infinity of a Geometric Progression (GP) is twice the sum of the first two terms. Find possible values of the common ratio.
 - (1) $\pm 1/3$ (2) $\pm 1/2$ (3) $\pm 1/\sqrt{2}$ (4) $\pm 1/\sqrt{3}$ (5) $\pm 1/\sqrt{4}$

- **Q.28.** Find an equation of the parabola with focus at (0, 4) and vertex at (0, 0)
 - (1) $x^2 = 16 y$
 - (2) $y = 16 x^2$
 - (3) y= 4ax
 - (4) $y^2 = 4ax$
 - (5) Not listed in the answers
- **Q.29.** Let X be a variable with a binomial distribution, n=25 and p=0.3. Which of the following statements is true?
 - (1) The mean of X is 7.5 and variance is 5.25
 - (2) The mean of X is 7.5 and variance is 0.21
 - (3) The mean of X is 5 and variance is 0.09
 - (4) The mean of X is 0.75 and variance is 1
 - (5) Not listed in the answers.

Q.30. Let
$$B = \begin{pmatrix} 3 & -2 \\ 5 & 7 \end{pmatrix}$$
 and $C = \begin{pmatrix} 1 & 2 \\ 6 & -3 \end{pmatrix}$. Find $A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ such that 2A=3B-2C
(1) $\begin{pmatrix} 7 & -10 \\ 3 & 27 \end{pmatrix}$
(2) $\begin{pmatrix} 26 & -20 \\ 0 & 54 \end{pmatrix}$
(3) $\begin{pmatrix} 3.5 & -10 \\ 1.5 & 13.5 \end{pmatrix}$
(4) $\begin{pmatrix} 2.5 & -5 \\ 1.5 & 14.5 \end{pmatrix}$
(5) $\begin{pmatrix} 1 & -2 \\ 2 & 4 \end{pmatrix}$

- **Q.31.** Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?
 - (1) ½
 - (2) ¾
 - (3) 3/8
 - (4) 5/16
 - (5) Not listed here

Q.32. Find
$$\frac{dy}{dx}$$
 for $y = 2^{cotx}$.
(1) $-2^{cotx} \ln 2$
(2) $-2^{cotx} \ln 2 (\sec^2 x)$
(3) $-2^{cotx} \ln 2 (\csc^2 x)$
(4) $2^{cotx} \ln 2 (\csc^2 x)$
(5) None of the above

Q.33. Find
$$\frac{dy}{dx}$$
 for $y = cos^2(x^3)$.
(1) $-6x^2cos(x^3)sin(x^3)$
(2) $-6x^2cos(x^3)sin^2(x^3)$
(3) $6x^2cos(x^3)sin(x^3)$
(4) $-6x^2cos(x^3)sinx$
(5) None of the above

Q.34. Find
$$\frac{dy}{dx}$$
 for $y = e^{5x^2 + 7x - 13}$.
(1) $(5x^2 + 7x) e^{5x^2 + 7x - 13}$
(2) $e^{5x^2 + 7x - 13}$
(3) $(10x + 7)e^{5x^2 + 7x - 13}$
(4) $10x + 7$
(5) None of the above

Q.35. Evaluate
$$\int x^2 e^{3x} dx$$

(1)
$$\frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{e^{3x}}{27} + c$$

(2) $\frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2e^{3x}}{27} + c$
(3) $\frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2e^{3x}}{9} + c$
(4) $\frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2e^{x}}{27} + c$

(5) None of the above

Q.36. Determine which of the following is true.

$$f(x) = \begin{cases} 3x - 5 & if \ x \neq 1 \\ 2 & if \ x = 1 \end{cases}$$
(1) *f* is continuous at *x* = 1.
(2) *f* is not continuous at *x* = 1
(3) *f* is not continuous at *x* = 2
(4) *f* is not continuous at *x* = 0
(5) None of the above
Evaluate $\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}}$.
(1) 2
(2) 10
(3) 4
(4) 5
(5) 6
Evaluate $\lim_{x \to 0} \frac{3^x - 2^x}{x^2 - x}$.
(1) $\ln 3 - \ln 2$
(2) $\ln 2 - \ln 3$
(3) $\ln 2$
(4) 5

Q.37.

Q.38.

(5) ln 3

Q.39. Find the odd man out. 1, 5, 11, 17, 23, 29.

(1) 29
 (2) 11
 (3) 17
 (4) 1
 (5) 23

Q.40. Which equation has infinitely many solutions?

(1) $x = \frac{1}{4}x + \frac{3}{4}$ (2) $\frac{1}{3}x - 5 = \frac{2}{3}x - 5$ (3) $\frac{1}{2}(1 + 4x) = 2x - 3$ (4) $3 - 4x = -6(\frac{2}{3}x - \frac{1}{2})$ (5) None of the above

- Q.41. Which equation is not a linear function?
 - (1) y = xy + 2(2) y = x + 2y(3) $y = -x - \frac{y}{2}$ (4) y = x - y + 2(5) None of the above

Q.42. If a*b=2a-4b+2ab, then 2*3+3*2=?

- (1) 6
- (2) 8
- (3) 12
- (4) 14
- (5) 10

Q.43. b-[b-(a+b)-{b-(b-a+b)}+2a]=?

- (1) 0
- (2) 4a
- (3) a
- (4) −2*a*
- (5) None of the above
- **Q.44.** Glen spends a total of 9 hours writing a paper and finishing a project. He spends x hours on the paper and y hours finishing the project. Glen spends $1\frac{1}{2}$ more hours on the paper than he spends on the project. How many hours does Glen spends writing the paper?
 - (1) $3\frac{1}{4}$ hours
 - (2) $3\frac{3}{4}$ hours
 - (3) $5\frac{1}{4}$ hours
 - (4) $5\frac{3}{4}$ hours
 - (5) None of the above
- **Q.45.** Assume h(x) = f(g(x)), where both f and g are differentiable functions. If g(-1) = 2, f(2) = -4, g'(-1) = 3. What is h'(-1)?
 - (1) 6
 (2) 8
 (3) -12
 (4) 12
 (5) -10

Q.46. Differentiate $(x) = \frac{2^x}{2^x - 3^x}$.

(1)
$$\frac{6^{x} ln \frac{3}{2}}{(2^{x}-3^{x})^{2}}$$

(2)
$$\frac{ln \frac{3}{2}}{(2^{x}-3^{x})^{2}}$$

(3)
$$\frac{6^{x} ln \frac{2}{3}}{(2^{x}-3^{x})^{2}}$$

(4)
$$\frac{2^{x} ln \frac{3}{2}}{(2^{x}-3^{x})^{2}}$$

- (5) None of the above
- **Q.47.** In a group of 40 people, 10 are healthy and every person of the remaining 30 has either high blood pressure, a high level of cholesterol or both.15 have high blood pressure and 25 have high level of cholesterol. If a person is selected randomly from this group, what is the probability that he/she has high blood pressure and high level of cholesterol? (Answers have been rounded off to two decimal points)
 - (1) 0.38
 - (2) 0.63
 - (3) 0.75
 - (4) 0.45
 - (5) 0.25
- **Q.48.** Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5?
 - (1) 0.55
 - (2) 0.35
 - (3) 0.53
 - (4) 0.45
 - (5) 0.25
- Q.49. The exam grades of 7 students are: 70, 66, 72, 96, 46, 90, 50. What is the sample standard deviation?
 - (1) 18.6
 - (2) 20.1
 - (3) 17.5
 - (4) 19.2
 - (5) 21.4

- **Q.50.** In a box, there are 8 red, 7 blue and 6 green balls. One ball is picked up randomly. What is the probability that it is neither red nor green? (Answers have been rounded off to two decimal points)
 - (1) 0.33
 - (2) 0.75
 - (3) 0.37
 - (4) 0.38
 - (5) 0.43

M.Phil-Ph.D SAMPLE QUESTIONS

<u>SET II</u>

ANSWER KEY

TEST OF BASIC MATHEMATICS			
	Choice	Q.No.	Choice
Q.1	3	Q.26	1
Q.2	5	Q.27	3
Q.3	4	Q.28	1
Q.4	1	Q.29	1
Q.5	2	Q.30	3
Q.6	4	Q.31	2
Q.7	1	Q.32	3
Q.8	3	Q.33	1
Q.9	5	Q.34	3
Q.10	2	Q.35	2
Q.11	3	Q.36	2
Q.12	1	Q.37	3
Q.13	4	Q.38	2
Q.14	2	Q.39	4
Q.15	2	Q.40	4
Q.16	3	Q.41	1
Q.17	3	Q.42	4
Q.18	2	Q.43	1
Q.19	4	Q.44	3
Q.20	1	Q.45	3
Q.21	1	Q.46	1
Q.22	5	Q.47	5
Q.23	2	Q.48	4
Q.24	1	Q.49	1
Q.25	1	Q.50	1